
Zhang et al. BMC Genomic Data            (2022) 23:8  
https://doi.org/10.1186/s12863-022-01024-2

RESEARCH

N6‑Methyladenosine‑Related lncRNAs 
as potential biomarkers for predicting 
prognoses and immune responses in patients 
with cervical cancer
He Zhang, Weimin Kong*, Xiaoling Zhao, Chao Han, Tingting Liu, Jing Li and Dan Song 

Abstract 

Background:  Several recent studies have confirmed epigenetic regulation of the immune response. However, the 
potential role of RNA N6-methyladenosine (m6A) modifications in cervical cancer and tumour microenvironment 
(TME) cell infiltration remain unclear.

Results:  We evaluated and analysed m6A modification patterns in 307 cervical cancer samples from The Cancer 
Genome Atlas (TCGA) dataset based on 13 m6A regulators. Pearson correlation analysis was used to identify lncR-
NAs associated with m6A, followed by univariate Cox regression analysis to screen their prognostic role in cervical 
cancer patients. We also correlated TME cell infiltration characteristics with modification patterns. We screened six 
m6A-associated lncRNAs as prognostic lncRNAs and established the prognostic profile of m6A-associated lncRNAs by 
least absolute shrinkage and choice of operator (LASSO) Cox regression. The corresponding risk scores of the patients 
were derived based on their prognostic features, and the correlation between this feature model and disease progno-
sis was analysed. The prognostic model constructed based on the TCGA-CESC (The Cancer Genome Cervical squa-
mous cell carcinoma and endocervical adenocarcinoma) dataset showed strong prognostic power in the stratified 
analysis and was confirmed as an independent prognostic indicator for predicting the overall survival of patients with 
CESC. Enrichment analysis showed that biological processes, pathways, and markers associated with malignancy were 
more common in the high-risk subgroup. Risk scores were strongly correlated with the tumour grade. ECM receptor 
interactions and pathways in cancer were enriched in Cluster 2, while oxidative phosphorylation and other biological 
processes were enriched in Cluster 1. The expression of immune checkpoint molecules, including programmed death 
1 (PD-1) and programmed death ligand 1 (PD-L1), was significantly increased in the high-risk subgroup, suggesting 
that this prognostic model could be a predictor of immunotherapy.

Conclusions:  This study reveals that m6A modifications play an integral role in the diversity and complexity of TME 
formation. Assessing the m6A modification patterns of individual tumours will help improve our understanding of 
TME infiltration characteristics and thus guide immunotherapy more effectively. We also developed an independent 
prognostic model based on m6A-associated lncRNAs as a predictor of overall survival, which can also be used as a 
predictor of immunotherapy.
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Background
In all organisms, genetic information flows from DNA 
to RNA and then to proteins. As the third layer of epi-
genetics, RNA plays a crucial role, not only in transmit-
ting genetic information from DNA to proteins but also 
in regulating various biological processes. More than 
150 RNA modifications have been identified, including 
5-methylcytosine (M5C), N6-methyladenosine (M6A), 
and N1-methyladenosine (M1A), among others [1]. As 
the predominant and most abundant form of internal 
modification in eukaryotic cells, m6A is methylation 
occurring at the adenosine N6 position with an abun-
dance of 0.1–0.4% among the total adenosine residues 
and it is widely present in mRNA, lncRNA and miRNA 
[2]. N6-methyladenosine is mainly present in two 
sequences, -G-m6A-C- (70%) and -A-m6A-C- (30%) [3], 
and it is enriched near the stop codon, 3’ untranslated 
region (UTR) and in long internal exons [4, 5]. Three 
major classes of proteins are involved in m6A modifica-
tion: the first is the methyltransferases responsible for 
the modification, the second is demethylases, and the 
third is effector proteins. m6A methylation is formed by 
methyltransferases such as RBM15, ZC3H13, METTL3, 
and METTL14, while the removal process is mediated by 
demethylases such as FTO and ALKBH5 [6]. In addition, 
a specific set of RNA-binding proteins, such as YTH-
DFs, IGF2BPs, and THDC1/2, can recognize m6A motifs 
and thus affect the function of m6A [7, 8]. An in-depth 
understanding of these regulatory factors will help to 
reveal the role and mechanism of m6A modifications in 
posttranscriptional regulation. It has been reported that 
m6A regulators play critical roles in a variety of biological 
functions in vivo. An increasing number of studies have 
shown that aberrant expression and genetic alterations of 
m6A regulators are associated with a variety of biological 
processes, including dysregulated cell death and prolif-
eration, developmental defects, malignant tumour pro-
gression, impaired self-renewal capacity, and abnormal 
immune regulation [9–11].

Using the immune system to fight cancer has become 
an effective treatment option, and immunotherapy repre-
sented by immune checkpoint blockade (ICB, PD-1/L1, 
and CTLA-4) has shown impressive clinical efficacy in 
several cancer types [12, 13]. Unfortunately, the clinical 
benefit for most patients remains relatively small and far 
from what is needed to satisfy clinicians. Traditionally, 
we have considered tumour progression to be a multistep 
process involving only genetic and epigenetic variation 
in tumour cells [14]. However, numerous studies have 

shown that the microenvironment in which tumour cells 
grow and survive also plays a crucial role in tumour pro-
gression. The tumour microenvironment (TME) contains 
not only cancer cells but also stromal cells (e.g., resident 
fibroblasts, cancer-associated fibroblasts (CAFs)) and 
macrophages, as well as distantly recruited cells such as 
infiltrating immune cells (myeloids and lymphocytes), 
bone marrow-derived cells (BMDCs), and secreted fac-
tors such as cytokines, chemokines, growth factors, and 
neointima [15]. With the increasing understanding of 
the diversity and complexity of the tumour microenvi-
ronment, there is increasing evidence that the tumour 
microenvironment plays an important role in tumour 
progression and immune escape and has an impact on 
the immunotherapeutic response [16]. Predicting the ICB 
response based on the characteristics of TME cell infil-
tration is a critical step to improve the success of existing 
ICBS and to develop new immunotherapeutic strategies 
[17]. Thus, by analysing the heterogeneity and complexity 
of the TME landscape, it is possible to identify distinct 
tumour immunophenotypes, and the ability to guide and 
predict immunotherapeutic responses will be improved. 
Additionally, we aimed to reveal new relevant biomark-
ers and demonstrate the effectiveness of these markers in 
identifying patient responses to immunotherapy, with the 
goal of finding new relevant therapeutic targets.

In recent years, several studies have proposed a cor-
relation between TME immune cell infiltration and m6A 
modifications [18]. Some evidence has demonstrated 
that m6A regulates transcriptional and protein expres-
sion through splicing, translation, degradation, and 
export, thereby mediating the biological processes of 
cancer cells and/or stromal cells and characterizing the 
TME [19]. The TME plays a critical role in the complex 
regulatory network of m6A modifications and it subse-
quently affects tumorigenesis, tumor progression, and 
the tumor therapeutic response [20]. Wang et al. showed 
that RNA methyltransferase METTL3-mediated m6A 
methylation promotes dendritic cell (DC) activation and 
function. m6A translation of METTL3-mediated CD40, 
CD80, and TLR4 signalling junction TIRAP transcripts 
is enhanced in DCs to stimulate T cell activation and 
enhance TLR4/NF-κB signalling-induced cytokine pro-
duction [8]. Research by Jiang et  al. showed that highly 
expressed TLR4 activated the NF-κB pathway, upregu-
lated ALKBH5 expression, and increased m6A levels 
and NANOG expression, all contributing to ovarian car-
cinogenesis [21]. Chen et al. showed that m6A methyla-
tion of RNA and HIF-1α/2α-dependent AlkB homologue 
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5 (ALKBH5) participate in the regulation of HIFs and 
SOX2 in endometrial carcinoma. Hypoxia induces an 
endometrial cancer stem-like cell phenotype via HIF-
dependent demethylation of SOX2 Mrna [22]. However, 
studies of the relationship between m6A and TMB inter-
actions in cervical cancer have rarely been reported.

In general, basic research may be limited to only one 
or two M6A regulators and cell types. However, it is well 
known that antitumour effects are characterized by the 
interaction and high synergy of numerous tumour sup-
pressors. Therefore, a comprehensive understanding of 
multiple m6A regulator-mediated TME cell infiltration 
patterns will help deepen our understanding of TME 
immune regulation [23]. In this study, we integrated 
genomic information from 307 cervical cancer speci-
mens, performed a comprehensive evaluation of M6A 
modification patterns, and correlated M6A modification 
patterns with TME cell infiltration characteristics. We 
established an m6A-related lncRNA-based scoring sys-
tem to quantify the m6A modification patterns of indi-
vidual patients.

Methods
Cervical cancer dataset source and preprocessing
The workflow of our study is shown in Fig.  1. Public 
gene expression data and full clinical annotation were 
searched in the TCGA database. Patients without sur-
vival information were removed from the analysis. In 
this study, TCGA-CESC was collected for further analy-
sis, which included a total of 307 tissue samples from 
patients with cervical cancer, as well as 3 normal tissue 
samples. RNA sequencing data (FPKM value) of gene 

expression were downloaded from the Genomic Data 
Commons (GDC,  https://​portal.​gdc.​cancer.​gov/) [24]. 
Then, the FPKM values were transformed into transcripts 
per kilobase million (TPM) values. Coexpression analysis 
of m6A-associated genes and lncRNA-associated genes 
was performed using the "limma" package. Gene coex-
pression network relationship graphs were constructed 
using the "igraph" package.

Unsupervised clustering for 13 m6A regulators
A total of 13 regulators were extracted from TCGA 
datasets to identify different m6A modification pat-
terns mediated by m6A regulators. These 13 m6A regu-
lators included 6 writers (METTL3, METTL14, RBM15, 
WTAP, KIAA1429, and ZC3H13), 2 erasers (ALKBH5, 
FTO), and 5 readers (YTHDC1, YTHDC2, YTHDF1, 
YTHDF2, and HNRNPC). Unsupervised clustering 
analysis was applied to identify distinct m6A modifica-
tion patterns based on the expression of 6 m6A regulators 
and to classify patients for further analysis. The number 
of clusters and their stability were determined by the 
consensus clustering algorithm. We used the R package 
“ConsensuClusterPlus” to perform the above steps, and 
1000 repetitions were conducted to guarantee the stabil-
ity of the classification [25].

Estimation of TME cell infiltration and functional 
annotation
We used the GSEA (gene-set enrichment analysis) algo-
rithm to quantify the relative abundance of each cell 
infiltration in the CESC TME, including activated CD8 
T cells, activated dendritic cells, macrophages, natural 

Fig. 1  Flow chart of the development and validation of an N6-methylandenosine-related lncRNA-based prognostic signature for CESC

https://portal.gdc.cancer.gov/
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killer T cells, regulatory T cells, and so on. GSEA was 
performed using GSEA software, and gene sets of “c2.
cp.kegg.v7.2.symbols” were downloaded from the 
MSigDB database (http://​softw​are.​broad​insti​tute.​org/​
gsea/​msigdb) for running GSEA. Among them, KEGG 
has been widely used in biological big data analysis [26–
28]. The enrichment scores calculated by GSEA were uti-
lized to represent the relative abundance of each TME 
infiltrating cell in each sample. We regarded the path-
ways with |NES|> 1 and NOM p-val < 0.05 as significantly 
enriched pathways.

Construction of the Prognostic Signature
The m6A methylation regulators were included in the 
least absolute shrinkage and selection operator (LASSO) 
Cox regression model. Prognostic features and correla-
tion models were constructed, their correlation coeffi-
cients were calculated, and the expression of each gene 
was multiplied by its coefficient to calculate the sum of 
risk scores for each patient. The sensitivity and specific-
ity of the prognostic signature were assessed by receiver 
operating characteristic (ROC) curves and the area under 
the ROC curves (AUC).

Statistical analysis
The survival curves for the prognostic analysis were gen-
erated via the Kaplan–Meier method, and log-rank tests 
were utilized to identify the significance of the differ-
ences. We adopted a univariate Cox regression model to 
calculate the hazard ratios (HRs) for m6A regulators and 
m6A phenotype-related genes. The independent prog-
nostic factors were ascertained through a multivariable 
Cox regression model. Patients with detailed clinical data 
were eligible for final multivariate prognostic analysis. 
The forest plot R package was employed to visualize the 
results of the multivariate prognostic analysis for the 
m6Ascore in the TCGA-CESC cohort. The specificity and 
sensitivity of the m6Ascore were assessed through the 
ROC curve, and the AUC was quantified using the “tim-
eROC” R package. All statistical P values were two sided, 
with p < 0.05 defined as statistically significant. All data 
processing was conducted in R 4.0.4 software.

Results
Expression, Correlation, and Interaction of M6A 
methylation regulators in cervical cancer
The mRNA expression levels of m6A RNA methyla-
tion regulators were analysed using the transcriptome 
data in FPKM format. The expression levels of different 
m6A genes in normal and tumour tissues were observed 
and analysed differently by heatmaps with the R pack-
age "pheatmap" (Fig. 2C), and the expression levels of 13 
regulators in CESC and normal tissues were shown in 

correlation plots of the R package "corrplot" (Fig. 2B) and 
the violin plot of "vioplot" (Fig. 2A). The results showed 
that the regulators were positively correlated with each 
other, including a significant positive correlation between 
YTHDC1 and METTL14, with a correlation coefficient 
of 0.63. The mRNA expression levels of three regulators 
(RBM15, METTL3, and YTHDF2) were significantly 
increased, and FTO was decreased in CESC compared 
with normal tissues. No significant difference was found 
for the other nine regulators.

Coexpression of m6A and its relationship with lncRNAs 
and the search for prognosis‑related lncRNAs
Although the functions of most lncRNAs are currently 
not fully known, synergistic regulatory relationships or 
functional correlations between lncRNAs and mRNAs 
have been suggested to exist. Therefore, by constructing a 
coexpression network (Fig. 3A) of lncRNAs and mRNAs, 
we can predict the possible role of lncRNAs in cervi-
cal cancer. The m6A-related lncRNAs were identified by 
coexpression analysis with the R package "limma". m6A 
and lncRNA coexpression relationships were plotted with 
the R package "igraph". Six prognosis-associated lncR-
NAs, AC008124.1 (p = 0.04, HR = 0.668), AC015922.2 
(p = 0.005, HR = 1.093), AC073529.1, C9orf147, 
AC000068.1, and RPP38-DT (p < 0.1), were analysed and 
identified in combination with the clinical survival data. 
Figure  3B shows the expression of target lncRNAs in 
tumour samples and normal samples lncRNA box plots 
(Fig. 3C) and heatmaps (Fig. 3D) were obtained by the R 
packages "pheatmap", "reshape2" and "ggpubr". The high-
risk lncRNAs associated with the prognosis are indicated 
in red, and the low-risk lncRNAs are indicated in green.

Consensus Clustering Identified Two Clusters of CESC
The CESC cohort was classified into different clusters 
based on the expression of prognosis-related lncRNAs. 
When the cluster index "k" was increased from 2 to 9, 
k = 2 proved to be the best point to obtain the maximum 
difference between clusters and produced the least inter-
ference between clusters at this time. Then, the CESC 
cohort was divided into Cluster 1 and Cluster 2, where 
Cluster 1 contained 252 samples and Cluster 2 contained 
52 samples. Cluster 2 represents the higher lncRNA 
score. However, no significant survival difference was 
found between the two groups by Kaplan–Meier survival 
analysis (p = 0.066).

Clinical features between the clusters
Then, the correlation between the two clusters and the 
clinical characteristics was analysed, as shown in Fig. 4A. 
We explored the relationship between the six lncRNAs 
mentioned above and TNM stage, FIGO (Federation 

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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International of Gynaecology and Obstetrics), stage, age, 
and grading, but the results showed that the correlations 
were not significant (p > 0.05).

Analysis of immune cell infiltration in CESC
The R package "CIBERSORT" was used to obtain the 
results of the immune cell content in the CESC samples 
and to score the stromal cells and immune cells in the 
samples separately. The total score uses the combined 
score, i.e., the CIBERSORT score. Violin plots (Fig.  4B) 
and box plots (Fig.  4C) of the immune cell differences 
between the clusters were plotted using the R packages 
"vioplot" and "ggpubr". Differential analysis of immune 
cells between clusters showed that activated CD4 
memory T cells (p = 0.016) and resting dendritic cells 
(p = 0.022) were highly expressed in Cluster 1 compared 
to Cluster 2, and resting CD4 memory T cells (p = 0.049) 
were highly expressed in Cluster 2 compared to Cluster 
1. However, the scoring of the tumour microenvironment 
between the two clusters was not statistically significant.

Results of the CESC tumour microenvironment enrichment 
analysis
Next, considering the strong association between the 
m6A-associated lncRNA scores and the prognostic and 
clinical features, we identified the genes and signalling 
pathways associated with m6A-related lncRNAs that 
influence clinical outcomes. Using the KEGG (Kyoto 
Encyclopedia of Genes and Genomes) database, we 
applied GSEA to examine the enriched gene sets that 
were obtained for Cluster 1 and Cluster 2 (Fig. 4D). The 
ECM receptor interaction (NES (normalized enrich-
ment score) = 1.67, nominal p = 0.03), pathways in can-
cer (NES = 1.61, nominal p = 0.006), and other biological 
processes were enriched in Cluster 2, while oxidative 
phosphorylation and other biological processes were 
enriched in Cluster 1. Some of these gene sets were pre-
viously identified as being related to m6A modification. 
These results may provide some insight into the biologi-
cal effects of m6A-related lncRNAs.

Fig. 2  The expression of 13 m6A RNA methylation regulators in the TCGA-CESC cohort. A The violin plot shows the significantly differentially 
expressed m6A RNA methylation regulators between CESC tissues and normal tissues. B The correlations among m6A RNA methylation regulators 
were analysed by Pearson correlation. C Heatmap of m6A RNA methylation regulators between CESC tissues and normal tissues
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Development of a Prognostic Signature
A prognostic signature, including AC008124.1, RPP38-
DT, AC015922.2, and AC073529.1, was developed 
using the LASSO Cox regression model according to 
the minimum criterion (Fig.  5A, B). The coefficients of 
AC008124.1, RPP38-DT, AC015922.2 and AC073529.1 
were -0.4945, -0.7024, 0.0962 and -1.6514, respectively. 
The risk score for each CESC patient was therefore calcu-
lated with the following formula

where i is the expression of m6A‑related lncRNA
To validate the prognostic value of this model, we divided 
the training (n = 152) and testing (n = 152) cohorts 
into high- and low-risk groups based on significant dif-
ferences in OS determined by Kaplan–Meier curves 
(ptraining < 0.01, ptesting < 0.05) (Fig. 5C). Based on the area 
under the curve (AUC) values, the model adequately 

riskScore =

∑
(Coef i ∗ 1ncRNAi)

Fig. 3  A Coexpression of m6A and its relationship with lncRNAs. B Expression of target lncRNAs in tumour samples and normal samples. C Forest 
plot of lncRNA expression by one-way Cox analysis, where red represents high-risk lncRNAs and green represents low-risk lncRNAs (p < 0.1). D 
Heatmap of lncRNA expression in normal and tumour samples. Red represents upregulated expression, and blue represents downregulated 
expression

(See figure on next page.)
Fig. 4  A Clinical features (including TNM staging, early (IA-IIA) and late (IIB-IVB) FIGO staging, histological grading, age > 50 years/ < 50 years, and 
clusters 1/2). Analysis of immune cell infiltration in CESCs. B Violin plots of immune cell differences between clusters 1/2. C Box plots of immune 
cell differences between clusters 1/2, where blue represents cluster 1 and red represents cluster 2. D Results of CESC gene set enrichment analysis 
(GSEA)
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Fig. 4  (See legend on previous page.)
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predicted the OS rates for CESC patients in both cohorts 
(AUC​training = 0.708, AUC​testing = 0.668) (Fig.  5D). Risk 
profiles for the training and test groups showed that 
AC015922.2 was highly expressed in the high-risk group, 
while RPP38-DT, AC008124.1, and AC073529.1 were 
highly expressed in the low-risk group (Fig. 6).

m6A risk scores as independent prognostic indicators
To further evaluate the prognostic value of the 
m6A-related lncRNA risk signature, factors including 
risk score, age, FIGO stage, and histological grade were 
successively included in the univariate and multivariate 
Cox regression models. Because the training and test-
ing cohorts were derived from the same datasets and the 
sample size was limited, we subsequently merged all sam-
ples to increase the sample size. Univariate and multifac-
torial Cox regression analyses showed that the risk score 
and stage were significantly related to OS in both Cox 
analyses (p < 0.001) (Fig. 7A, B), indicating that the signa-
ture may be an independent prognostic tool.

Association between m6A‑related lncRNA risk scores 
and clinicopathological characteristics
Next, we evaluated the association between the risk 
scores and the clinicopathological features by produc-
ing a heatmap of the clinical characteristics, includ-
ing TNM stage, histological grade, and FIGO stage, 
associated with the expression levels of the four 
selected regulators, where the immune score and clus-
ter differed between patients in the high- and low-
risk groups (Fig.  7C). No significant differences were 
detected among other clinical characteristics. Vali-
dation of the grouping by grading, staging, and age 
showed that the model we developed applied to dif-
ferent clinical groupings, including age < 50 (p = 0.04), 
age ≥ 50 (p = 0.004), stage IA-IIA (p < 0.001), G1-G2 
(p = 0.046), and G2-G3 (p = 0.006). There were statis-
tically significant differences in patient risk between 
age groups (age ≥ 50/age < 50, p = 0.047), immune 
scoring (high/low, p = 0.002), and clusters (Cluster 
1/2, p = 1.3e*−10), and no statistically significant dif-
ferences between patients with different stages and 
grades (Fig. 7D).

Fig. 5  Development of a Prognostic Signature. A and B Least absolute shrinkage and selection operator (LASSO) regression was performed, 
calculating the minimum criteria. C Kaplan–Meier survival analysis for the training and testing groups. D ROC (receiver operating characteristic) 
curves were used to evaluate the prediction efficiency of the prognostic signature
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Identification of m6A‑related lncRNA risk scores associated 
with immune checkpoint molecules and immune cells
Next, we analysed the effects of m6A-related lncRNA 
modification on immune responses in CESC patients. 
The m6A-associated high-risk subgroup was associated 
with a significantly higher expression of several immune 
checkpoints, including programmed death 1 (PD-1) 
and programmed death ligand 1 (PD-L1), suggesting 
a potential response to anti-PD-1/L1 immunotherapy 
(Fig.  8A). For immune cells in the tumour microenvi-
ronment, activated mast cells (p = 0.002), neutrophils 
(p = 0.045) and quiescent NK cells (p = 0.026) were 
significantly activated in high-risk patients (Fig. 8B). It 
is suggested that immune cells in the TME may play a 
multifaceted role in the tumour microenvironment by 
mediating therapeutic resistance and immune tolerance 
in response to immune blockade. The mechanisms may 

be related to the regulation of various events in tumour 
biology, such as cell proliferation and survival, angio-
genesis, aggressiveness and metastasis. In addition, 
it is possible that tumour-associated mast cells shape 
the tumour microenvironment by establishing cross-
talk with other tumour-infiltrating cells [29]. Taken 
together, our work strongly suggests that m6A methyla-
tion modification patterns and m6A lncRNA-based risk 
typing are significantly associated with the response to 
PD-1/L1 immunotherapy and that the established m6A 
methylation modification profile will help predict the 
response to anti-PD1/L1 immunotherapy in cervical 
cancer patients. This finding needs to be further vali-
dated and confirmed in clinical practice [13].

Fig. 6  A Distributions of risk scores (red means high-risk score, green means high-risk score), B survival status (red means dead patients, green 
means alive patients) and C risk heatmap (red represents high expression, green represents low expression) of CESC patients based on the 
m6A-related lncRNA prognostic signature
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Discussion
As a reversible RNA modification process, m6A meth-
ylation has recently attracted much attention. However, 
how it plays a role in the development of cervical can-
cer in a lncRNA-dependent manner is still unknown 
[30, 31]. A growing body of research suggests that m6A 

modification plays an important role in the immune 
response, inflammation, and antitumour effects by 
interacting with different m6A regulators [32]. Although 
a large number of studies have revealed the epige-
netic regulatory role of m6A regulators in the immune 
environment, the overall characterization of the m6A 

Fig. 7  m6A risk scores as independent prognostic indicators. A Univariate Cox analysis of the clinicopathological features and risk score. B 
Multivariate Cox analysis identified the independent prognostic predictors. C The clinicopathological differences between the high- and low-risk 
groups. D Kaplan–Meier survival analysis of different clinical characteristics (patients age ≥ 50/ < 50, patients with G1-2/3–4, patients with stage 
IA-IIA) in the high-risk/low-risk groups
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regulator-mediated TME is not fully understood [33, 
34]. Therefore, identifying different m6A modification 
patterns in the tumour immune microenvironment will 
help provide insight into the interactions of m6A meth-
ylation in the antitumour immune response and help 
clinicians develop more precise tumour immunotherapy 
strategies [23, 35].

A total of 307 cervical cancer samples and three nor-
mal samples from the TCGA database were included in 
our study to explore the prognostic significance of the 
m6A-associated tumour microenvironment and lncR-
NAs. Four m6A-associated lncRNAs, AC008124.1, 
RPP38-DT, AC015922.2, and AC073529.1, were shown to 
have prognostic value in the TCGA dataset. These four 
lncRNAs have been reported to be associated with can-
cer progression; among them, Zhou et  al. reported that 
lncRNA AC008124.1 regulated mRNAs in trans in breast 
cancer subtypes by competing for miRNAs [36]. Evans 
linked the upregulation of genes such as RPP38-DT to 
immunosuppressive therapy by gene enrichment analy-
sis, suggesting that their interaction may be involved in 
the treatment of non-small-cell lung cancer [37]. Yang 
et  al. identified AC015922.2 as a VHL (Von Hippel-
Lindau)-associated lncRNA that is downregulated in 
ccRCC (clear cell renal cell carcinoma), whereas VHL 

gene inactivation is by far the most common oncogenic 
driver event in renal cell carcinoma [38].

Persistent infection of the cervical epithelium by 
human papillomavirus (HPV) and constitutive expres-
sion of viral oncogenes are thought to be the main causes 
of the complex molecular changes that lead to cervical 
epithelial cell transformation and cervical intraepithelial 
neoplasia [39]. Although lncRNAs AC008124.1, RPP38-
DT, AC015922.2, and AC073529.1 have rarely been 
reported in HPV infection and cervical carcinogenesis 
development, we still speculate that the above lncRNAs 
may interact with chromatin modification complexes in 
specific regulatory regions to regulate gene transcription, 
and microRNAs (miRNAs) and circular RNAs (circR-
NAs) are jointly involved in the initiation and promo-
tion of cervical cancer [39, 40]. Our future studies will 
also continue to focus on the up- or downregulation 
of target lncRNAs and observe their effects on impor-
tant metabolic pathways in cervical cancer cells, such as 
STAT3, Wnt/β-catenin, PI3K/AKT and Notch, as well 
as high-risk HPV-encoded proteins, such as E6 and E7 
oncoproteins.

We scored the CESC cohort patients according to their 
high or low expression of m6A-related lncRNAs and 
analysed the established independent prognostic model 

Fig. 8  A m6A-related lncRNA modification of immune responses in CESC patients. B m6A-related immune cells in the tumour microenvironment in 
CESC patients
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showing that patients with higher scores were usually 
accompanied by lower OS and worse clinical outcomes, 
a finding that was maintained in patients with cervical 
cancer of different grades, age > 50  years, age < 50  years 
and early stages. In the analysis of the tumour immune 
microenvironment, some studies point out that the TME 
shapes the fate of tumours by modulating the dynamic 
DNA (and RNA) methylation patterns of these immune 
cells to alter their differentiation into procancer (e.g., 
regulatory T cells) or anticancer (e.g., CD8 + T cells) cell 
types [41]. We found that high-risk subgroups were sig-
nificantly associated with elevated levels of tumour-infil-
trating lymphocytes and PD-L1 and PD-1, supporting the 
potential predictive value of immunotherapy.

The results of this study were derived and validated 
using the TCGA dataset for cervical cancer, but several 
limitations of our study remain. More independent cervi-
cal cancer cohorts should be used to validate the prog-
nosis of m6A-associated lncRNAs. In addition, the role 
of lncRNAs and their interactions with m6A-related 
genes should be experimented with and confirmed using 
in vitro and in vivo approaches.

In summary, our study comprehensively evaluated 
the m6A modification patterns of 13 m6A regulators in 
307 cervical cancer samples, established an independ-
ent prognostic model based on m6A-associated lncR-
NAs, and systematically correlated these modification 
patterns with TME cell infiltration characteristics. 
The above evidence suggests that m6A modifications 
are targeted to lncRNAs and that RNA methylation 
is important in the immune regulation of tumours. 
Assessing the m6A modification patterns of individ-
ual tumours will help improve our understanding of 
the infiltrative characteristics of the TME. We should 
pay more attention to the interaction and function of 
lncRNAs with m6A modifications to identify potential 
markers of prognosis and drugs for cervical cancer and 
refine therapeutic targets. Therefore, we hope that our 
findings will help identify prognostic lncRNAs that 
may be targeted by m6A modulators, thereby provid-
ing insight into their potential role in cervical cancer 
development, which can be applied in clinical practice 
to guide treatment options.

Abbreviations
m6A: RNA N6-methyladenosine; TME: Tumour microenvironment; TCGA​: The 
Cancer Genome Atlas; LASSO: Absolute shrinkage and choice of operator; 
TCGA​: The Cancer Genome Cervical squamous cell carcinoma and endocervi-
cal adenocarcinoma; PD-1: Programmed death 1; PD-L1: Programmed death 
ligand 1; M5C: 5-Methylcytosine; M1A: N1-methyladenosine; ICB: Immune 
checkpoint blockade; CAF: Cancer associated fibroblast; BMDCs: Bone mar-
row-derived cells; DC: Dendritic cell; GEO: Gene-Expression Omnibus; GSEA: 
Gene-set enrichment analysis; ROC: Receiver operating characteristic; AUC​: 
Area under the ROC curves; HR: Hazards ratio; OR: Odds ratio; Figo: Federation 

International of Gynaecology and Obstetrics; KEGG: Kyoto Encyclopedia of 
Genes and Genomes.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12863-​022-​01024-2.

Additional file1:  Figure S1: Unsupervised clustering of the m6A regula-
tors in the CESC cohort. Figure S2: Differential analysis of ICB-related 
genes among different clusters and normal/tumour samples. Figure S3: 
Differential analysis of lncRNA and ICB-related genes. Figure S4: Tumour 
microenvironment matrix score, immune score and total score between 
cluster 1 and cluster 2. Figure S5: Waterfall plot of tumour somatic muta-
tions established by m6A and related lncRNAs. (produced by the maftools 
package)

Additional file2:  Table S1: Each sample in the CESC cohort is divided 
into two clusters based on cluster analysis. Table S2: m6A and lncRNA 
genes derived from the CESC cohort. Table S3: Expression relation-
ship between m6A and lncRNA in the CESC cohort. Table S4: Clinical 
characteristics of each sample in the CESC cohort. Table S5: Tumour 
microenvironmental characteristics of each sample in the CESC cohort. 
Table S6: Tumour microenvironment stromal score, immune score, and 
total tumour microenvironment score for each sample in the CESC cohort. 
Table S7: Construction of an independent prognostic model for the CESC 
cohort: factors and coefficients. Table S8: Survival time and survival status, 
lncRNA coefficient, risk score, and high/low risk classification for each 
sample in the CESC cohort.

Acknowledgements
The authors would like to thank colleagues at Beijing Obstetrics and Gynae-
cology Hospital at Capital Medical University for providing feedback. Thanks to 
RHZ and FZZ for their contribution to this study of statistical research.

Authors’ contributions
HZ and WMK contributed significantly to the analysis and manuscript prepara-
tion, performed the data analyses, and wrote the manuscript. WMK contrib-
uted to the conception of the study. XLZ, CH, TTL, JL and DS helped perform 
the analysis with constructive discussions. All authors read and approved the 
final manuscript.

Funding
This study does not include any funding support.

Availability of data and materials
The datasets generated during and analysed during the current study are 
available in The Cancer Genome Atlas repository (https://​portal.​gdc.​cancer. 
gov/). The source codes supporting the conclusions of this article are available 
on GitHub at https://​github.​com/​zhang​he543​21/​m6ace​rvival.​git.

Declarations

Ethics approval and consent to participate
No ethics approval was required. The authors declare that all methods were 
performed in accordance with the relevant guidelines and regulation. The 
results contain analyses using publicly available data obtained from TCGA.

Consent for publication
Not applicable

Competing Interests
The authors declare that they have no conflicts of interest.

Received: 19 May 2021   Accepted: 11 January 2022

https://doi.org/10.1186/s12863-022-01024-2
https://doi.org/10.1186/s12863-022-01024-2
https://portal.gdc.cancer
https://github.com/zhanghe54321/m6acervival.git


Page 13 of 13Zhang et al. BMC Genomic Data            (2022) 23:8 	

References
	1.	 Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA Modifications in Gene 

Expression Regulation[J]. Cell. 2017;169(7):1187–200. https://​doi.​org/​10.​
1016/j.​cell.​2017.​05.​045.

	2.	 Ma S, Chen C, Ji X, et al. The interplay between m6A RNA methylation and 
noncoding RNA in cancer[J]. J Hematol Oncol. 2019;12(1):121. https://​doi.​
org/​10.​1186/​s13045-​019-​0805-7.

	3.	 Wei CM, Moss B. Nucleotide sequences at the N6-methyladenosine 
sites of HeLa cell messenger ribonucleic acid[J]. Biochemistry. 
1977;16(8):1672–6. https://​doi.​org/​10.​1021/​bi006​27a023.

	4.	 Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of 
the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. 
Nature. 2012;485(7397):201–6. https://​doi.​org/​10.​1038/​natur​e11112.

	5.	 Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA 
methylation reveals enrichment in 3’ UTRs and near stop codons[J]. Cell. 
2012;149(7):1635–46. https://​doi.​org/​10.​1016/j.​cell.​2012.​05.​003.

	6.	 Wang Q, Chen C, Ding Q, et al. METTL3-mediated m(6)A modification 
of HDGF mRNA promotes gastric cancer progression and has prognos-
tic significance[J]. Gut. 2020;69(7):1193–205. https://​doi.​org/​10.​1136/​
gutjnl-​2019-​319639.

	7.	 Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation 
mediated through reversible m6A RNA methylation[J]. Nat Rev Genet. 
2014;15(5):293–306. https://​doi.​org/​10.​1038/​nrg37​24.

	8.	 Wang H, Hu X, Huang M, et al. Mettl3-mediated mRNA m(6)A methyla-
tion promotes dendritic cell activation[J]. Nat Commun. 2019;10(1):1898. 
https://​doi.​org/​10.​1038/​s41467-​019-​09903-6.

	9.	 Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by 
mRNA modifications[J]. Nat Rev Mol Cell Biol. 2017;18(1):31–42. https://​
doi.​org/​10.​1038/​nrm.​2016.​132.

	10.	 Lin X, Chai G, Wu Y, et al. RNA m(6)A methylation regulates the epithelial 
mesenchymal transition of cancer cells and translation of Snail[J]. Nat 
Commun. 2019;10(1):2065. https://​doi.​org/​10.​1038/​s41467-​019-​09865-9.

	11.	 Rodriguez-Ruiz ME, Vitale I, Harrington KJ, et al. Immunological 
impact of cell death signaling driven by radiation on the tumor 
microenvironment[J]. Nat Immunol. 2020;21(2):120–34. https://​doi.​org/​
10.​1038/​s41590-​019-​0561-4.

	12.	 Minn AJ, Wherry EJ. Combination Cancer Therapies with Immune 
Checkpoint Blockade: Convergence on Interferon Signaling[J]. Cell. 
2016;165(2):272–5. https://​doi.​org/​10.​1016/j.​cell.​2016.​03.​031.

	13.	 Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for 
cancer immunotherapy[J]. Science. 2020;367(6477):eaax0182. https://​doi.​
org/​10.​1126/​scien​ce.​aax01​82.

	14.	 Quail DF, Joyce JA. Microenvironmental regulation of tumor progression 
and metastasis[J]. Nat Med. 2013;19(11):1423–37. https://​doi.​org/​10.​
1038/​nm.​3394.

	15.	 Vitale I, Manic G, Coussens LM, et al. Macrophages and Metabolism in the 
Tumor Microenvironment[J]. Cell Metab. 2019;30(1):36–50. https://​doi.​
org/​10.​1016/j.​cmet.​2019.​06.​001.

	16.	 Goliwas KF, Deshane JS, Elmets CA, et al. Moving Immune Therapy For-
ward Targeting TME[J]. Physiol Rev. 2021;101(2):417–25. https://​doi.​org/​
10.​1152/​physr​ev.​00008.​2020.

	17.	 Deberardinis RJ. Tumor Microenvironment, Metabolism, and 
Immunotherapy[J]. N Engl J Med. 2020;382(9):869–71. https://​doi.​org/​10.​
1056/​NEJMc​ibr19​14890.

	18.	 Li M, Zha X, Wang S. The role of N6-methyladenosine mRNA in the tumor 
microenvironment[J]. Biochim Biophys Acta Rev Cancer. 2021;1875(2): 
188522. https://​doi.​org/​10.​1016/j.​bbcan.​2021.​188522.

	19.	 Zhu J, Xiao J, Wang M, et al. Pan-Cancer Molecular Characterization 
of m(6)A Regulators and Immunogenomic Perspective on the Tumor 
Microenvironment[J]. Front Oncol. 2020;10: 618374. https://​doi.​org/​10.​
3389/​fonc.​2020.​618374.

	20.	 Gu Y, Wu X, Zhang J, et al. The evolving landscape of N(6)-methyladen-
osine modification in the tumor microenvironment[J]. Mol Ther. 2021. 
https://​doi.​org/​10.​1016/j.​ymthe.​2021.​04.​009.

	21.	 Jiang Y, Wan Y, Gong M, et al. RNA demethylase ALKBH5 promotes ovarian 
carcinogenesis in a simulated tumour microenvironment through stimu-
lating NF-κB pathway[J]. J Cell Mol Med. 2020;24(11):6137–48. https://​doi.​
org/​10.​1111/​jcmm.​15228.

	22.	 Chen G, Liu B, Yin S, et al. Hypoxia induces an endometrial cancer stem-
like cell phenotype via HIF-dependent demethylation of SOX2 mRNA[J]. 
Oncogenesis. 2020;9(9):81. https://​doi.​org/​10.​1038/​s41389-​020-​00265-z.

	23.	 Kaymak I, Williams KS, Cantor JR, et al. Immunometabolic Interplay in the 
Tumor Microenvironment[J]. Cancer Cell. 2021;39(1):28–37. https://​doi.​
org/​10.​1016/j.​ccell.​2020.​09.​004.

	24.	 Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks: an R/Bioconductor 
package for integrative analysis of TCGA data[J]. Nucleic Acids Res. 
2016;44(8): e71. https://​doi.​org/​10.​1093/​nar/​gkv15​07.

	25.	 Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool 
with confidence assessments and item tracking[J]. Bioinformatics. 
2010;26(12):1572–3. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btq170.

	26.	 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes[J]. 
Nucleic Acids Res. 2000;28(1):27–30. https://​doi.​org/​10.​1093/​nar/​28.1.​27.

	27.	 Kanehisa M. Toward understanding the origin and evolution of cellular 
organisms[J]. Protein Sci. 2019;28(11):1947–51. https://​doi.​org/​10.​1002/​
pro.​3715.

	28.	 Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cel-
lular organisms[J]. Nucleic Acids Res. 2021;49(D1):D545-d551. https://​doi.​
org/​10.​1093/​nar/​gkaa9​70.

	29.	 Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor 
immune microenvironment (TIME) for effective therapy[J]. Nat Med. 
2018;24(5):541–50. https://​doi.​org/​10.​1038/​s41591-​018-​0014-x.

	30.	 Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer 
progression via augmenting EIF3C translation[J]. Nucleic Acids Res. 
2020;48(7):3816–31. https://​doi.​org/​10.​1093/​nar/​gkaa0​48.

	31.	 Barbieri I, Kouzarides T. Role of RNA modifications in cancer[J]. Nat Rev 
Cancer. 2020;20(6):303–22. https://​doi.​org/​10.​1038/​s41568-​020-​0253-2.

	32.	 Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through 
mRNA m(6)A methylation and YTHDF1 in dendritic cells[J]. Nature. 
2019;566(7743):270–4. https://​doi.​org/​10.​1038/​s41586-​019-​0916-x.

	33.	 He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role 
in cancer[J]. Mol Cancer. 2019;18(1):176. https://​doi.​org/​10.​1186/​
s12943-​019-​1109-9.

	34.	 Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in 
human cancer[J]. Mol Cancer. 2019;18(1):103. https://​doi.​org/​10.​1186/​
s12943-​019-​1033-z.

	35.	 Huang H, Weng H, Chen J. m(6)A Modification in Coding and Non-coding 
RNAs: Roles and Therapeutic Implications in Cancer[J]. Cancer Cell. 
2020;37(3):270–88. https://​doi.​org/​10.​1016/j.​ccell.​2020.​02.​004.

	36.	 Zhou S, Wang L, Yang Q, et al. Systematical analysis of lncRNA-mRNA 
competing endogenous RNA network in breast cancer subtypes[J]. 
Breast Cancer Res Treat. 2018;169(2):267–75. https://​doi.​org/​10.​1007/​
s10549-​018-​4678-1.

	37.	 Evans R E. Survival and Biomarker Trends for Non-small Cell Lung Cancer 
with the Implementation of Cuban Developed Therapies[D]. Buffalo: 
State University of New York at Buffalo; 2020.

	38.	 Yang W, Zhou J, Zhang K, et al. Identification and validation of the clinical 
roles of the VHL-related LncRNAs in clear cell renal cell carcinoma[J]. J 
Cancer. 2021;12(9):2702–14. https://​doi.​org/​10.​7150/​jca.​55113.

	39.	 Tornesello ML, Faraonio R, Buonaguro L, et al. The Role of microRNAs, 
Long Non-coding RNAs, and Circular RNAs in Cervical Cancer[J]. Front 
Oncol. 2020;10:150. https://​doi.​org/​10.​3389/​fonc.​2020.​00150.

	40.	 Qu X, Li Y, Wang L, et al. LncRNA SNHG8 accelerates proliferation and 
inhibits apoptosis in HPV-induced cervical cancer through recruit-
ing EZH2 to epigenetically silence RECK expression[J]. J Cell Biochem. 
2020;121(10):4120–9. https://​doi.​org/​10.​1002/​jcb.​29646.

	41.	 Mehdi A, Rabbani SA. Role of Methylation in Pro- and Anti-Cancer 
Immunity[J]. Cancers (Basel). 2021;13(3):545. https://​doi.​org/​10.​3390/​
cance​rs130​30545.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.cell.2017.05.045
https://doi.org/10.1016/j.cell.2017.05.045
https://doi.org/10.1186/s13045-019-0805-7
https://doi.org/10.1186/s13045-019-0805-7
https://doi.org/10.1021/bi00627a023
https://doi.org/10.1038/nature11112
https://doi.org/10.1016/j.cell.2012.05.003
https://doi.org/10.1136/gutjnl-2019-319639
https://doi.org/10.1136/gutjnl-2019-319639
https://doi.org/10.1038/nrg3724
https://doi.org/10.1038/s41467-019-09903-6
https://doi.org/10.1038/nrm.2016.132
https://doi.org/10.1038/nrm.2016.132
https://doi.org/10.1038/s41467-019-09865-9
https://doi.org/10.1038/s41590-019-0561-4
https://doi.org/10.1038/s41590-019-0561-4
https://doi.org/10.1016/j.cell.2016.03.031
https://doi.org/10.1126/science.aax0182
https://doi.org/10.1126/science.aax0182
https://doi.org/10.1038/nm.3394
https://doi.org/10.1038/nm.3394
https://doi.org/10.1016/j.cmet.2019.06.001
https://doi.org/10.1016/j.cmet.2019.06.001
https://doi.org/10.1152/physrev.00008.2020
https://doi.org/10.1152/physrev.00008.2020
https://doi.org/10.1056/NEJMcibr1914890
https://doi.org/10.1056/NEJMcibr1914890
https://doi.org/10.1016/j.bbcan.2021.188522
https://doi.org/10.3389/fonc.2020.618374
https://doi.org/10.3389/fonc.2020.618374
https://doi.org/10.1016/j.ymthe.2021.04.009
https://doi.org/10.1111/jcmm.15228
https://doi.org/10.1111/jcmm.15228
https://doi.org/10.1038/s41389-020-00265-z
https://doi.org/10.1016/j.ccell.2020.09.004
https://doi.org/10.1016/j.ccell.2020.09.004
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1002/pro.3715
https://doi.org/10.1002/pro.3715
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1093/nar/gkaa048
https://doi.org/10.1038/s41568-020-0253-2
https://doi.org/10.1038/s41586-019-0916-x
https://doi.org/10.1186/s12943-019-1109-9
https://doi.org/10.1186/s12943-019-1109-9
https://doi.org/10.1186/s12943-019-1033-z
https://doi.org/10.1186/s12943-019-1033-z
https://doi.org/10.1016/j.ccell.2020.02.004
https://doi.org/10.1007/s10549-018-4678-1
https://doi.org/10.1007/s10549-018-4678-1
https://doi.org/10.7150/jca.55113
https://doi.org/10.3389/fonc.2020.00150
https://doi.org/10.1002/jcb.29646
https://doi.org/10.3390/cancers13030545
https://doi.org/10.3390/cancers13030545

	N6-Methyladenosine-Related lncRNAs as potential biomarkers for predicting prognoses and immune responses in patients with cervical cancer
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Cervical cancer dataset source and preprocessing
	Unsupervised clustering for 13 m6A regulators
	Estimation of TME cell infiltration and functional annotation
	Construction of the Prognostic Signature
	Statistical analysis

	Results
	Expression, Correlation, and Interaction of M6A methylation regulators in cervical cancer
	Coexpression of m6A and its relationship with lncRNAs and the search for prognosis-related lncRNAs
	Consensus Clustering Identified Two Clusters of CESC
	Clinical features between the clusters
	Analysis of immune cell infiltration in CESC
	Results of the CESC tumour microenvironment enrichment analysis
	Development of a Prognostic Signature
	where i is the expression of m6A-related lncRNA
	m6A risk scores as independent prognostic indicators
	Association between m6A-related lncRNA risk scores and clinicopathological characteristics
	Identification of m6A-related lncRNA risk scores associated with immune checkpoint molecules and immune cells

	Discussion
	Acknowledgements
	References


